# Design of local exhaust ventilation for preventive maintenance in the semiconductor industry using CFD

Jwaryung Hong<sup>1</sup>, Jae-Han Koo<sup>2</sup>, Chang-sup Park<sup>2</sup>, Hyunhee Jung<sup>1</sup>, Soojin Lee<sup>3</sup>, Kwang-min Choi<sup>1</sup>

<sup>1</sup>Samsung Health Research Institute, Samsung Electronics Co. Ltd., <sup>2</sup>Environment of Occupational and Environmental Medicine, Hanyang University, Republic of Korea

## 1. Background

- When the chemicals are remained or generated by-product in equipment, which causes defects the product thus maintenance tasks are necessary periodically
- The maintenance tasks are performed manually by workers
- Replacement parts, troubleshooting and wiping out a chamber with an ethanol or de-ionized water soaked wiper
- At this time, there are potential risks that the maintenance workers might be exposed the reactant or by-products during the work. Additionally, the contaminants are released which may disperse in cleanroom, so workers who work surrounding area might be exposed as well [1, 2]

## 2. Objectives

- Design local exhaust ventilation(LEV) for maintenance tasks in order to improve working environment and protect worker's health in semiconductor manufacturing process
- The primary focus in designing the hood was convenience and undisturbance of the work

## 3. Methods

- 1) Experimental and numerical Model
- 300 mm semiconductor wafer fabrication facility, ISO class 5 (South Korea)
- Metallization process chamber was used
- A cylindrical chamber : 600(d) x 100(h) mm





(b) Circular hood with slot faces

(a) PM operation of Metal chamber

Figure 1. Metallization process chamber and test hood

- LEV: A cylindrical shape (same size with the chamber, D = 600 mm)
- To place on the chamber
- : Control the contaminants before disperse out of chamber
- The circular hood was made of acrylic were used in the experiments
- The measurements of face velocity
- : Hot-wire anemometer (TSI 9515) at 30 distributed points



- 2) Numerical method
- The commercial code : Fluent Ver. 19.2 (Ansys Inc.)
- Turbulence model : realizable k-ε model
- SIMPLE(Semi-Implicit Method for Pressure Linked Equations) algorithm
- 3) Boundary conditions
- Flow rate : 2.41 m<sup>3</sup>/min
- O Capture efficiency (CE) =  $(1-M_{out}/M_g) \times 100(\%)$
- The ratio of the captured contaminants to the total generated emission rate
- Source : A metalloid that is a member of group 15 of the periodic table
  - → uniformly released from a bottom of the chamber
- Mesh: 550,000~1,000,00

Table 1. Types and conditions of numerical analysis

| Case    | Туре      | Hood face<br>number | Layer | Opening Dimensions |          | Flow rate |  |
|---------|-----------|---------------------|-------|--------------------|----------|-----------|--|
|         |           |                     |       | W x L (mm)         | Area(m²) | (m³/min)  |  |
| Case 1  | Rectangle | 30                  | 1     | 80 x 20            | 0.048    |           |  |
| Case 2  | Slot      | 14                  | 2     | 20 x 200           | 0.048    |           |  |
| Case 3  | Slot      | 10                  | 2     | 20 x 200           | 0.040    |           |  |
| Case 4  | Slot      | 8                   | 2     | 20 x 200           | 0.032    |           |  |
| Case 5  | Slot      | 6                   | 2     | 20 x 200           | 0.024    | 2.44      |  |
| Case 6  | Slot      | 6                   | 1     | 20 x 200           | 0.024    | 2.41      |  |
| Case 7  | Slot      | 5                   | 1     | 20 x 200           | 0.020    |           |  |
| Case 8  | Slot      | 4                   | 1     | 20 x 200           | 0.016    |           |  |
| Case 9  | Slot      | 3                   | 1     | 20 x 200           | 0.012    |           |  |
| Case 10 | Slot      | 3                   | 1     | 20 x 200           | 0.012    |           |  |

## 4. Results

- 1) Comparison to numerical analysis and experimental results
- Overall simulation results agree quite well with the experiments data of measurement to the center line velocity on circular plenum surface
- The accuracy within 300 mm of the duct opening matched the experimental value within 20%



Figure 2. Comparison of the numerical and experimental results

#### 2) Rectangular type opening

- The velocity of each hood face was different by location
- The speed in the vicinity of the duct opening was up to 2.61 m/s, on the contrary, the minimum velocity opposite the duct opening was 0.12 m/s
- : The ratio of maximum and minimum velocity was 22.7



- O A stagnation zone might occur at the vortex of the recirculation zone
- It affects the hood performance and accumulates of pollutant in recirculation zone

### 3) Slot type opening

- The velocity distribution and capture efficiency were improved than rectangle face
  - Case 1 and 2 have a same area but they are significantly different
  - : No recirculation zone in slot type and uniform air flow generated
  - : Almost hood face velocity exceeded 0.5 m/s
- Efficiency to the number of slot
  - When the number of slot decreased, the face velocity were improved and uniformity were advanced
- Case 5 and 6 (different layer with same area)
- : there were no significant differences in slot layer
- : when the 1 layer, the velocity exceeded 2.0 m/s (ratio of maximum and minimum velocity was not more than twice)

#### Table 2. Results of the simulation

| Case    | Туре      | Hood face number | Layer | Capture efficiency(%) | Mean velocity (m/s) | Velocity distributio (max/min) |
|---------|-----------|------------------|-------|-----------------------|---------------------|--------------------------------|
| Case 1  | Rectangle | 30               | 1     | 82.1%                 | 0.816               | 22.65                          |
| Case 2  | Slot      | 14               | 2     | 90.2%                 | 1.185               | 6.08                           |
| Case 3  | Slot      | 10               | 2     | 91.8%                 | 1.401               | 3.80                           |
| Case 4  | Slot      | 8                | 2     | 93.0%                 | 1.795               | 2.92                           |
| Case 5  | Slot      | 6                | 2     | 94.9%                 | 2.420               | 1.96                           |
| Case 6  | Slot      | 6                | 1     | 91.1%                 | 2.366               | 1.57                           |
| Case 7  | Slot      | 5                | 1     | 92.3%                 | 2.859               | 1.36                           |
| Case 8  | Slot      | 4                | 1     | 94.0%                 | 3.571               | 1.26                           |
| Case 9  | Slot      | 3                | 1     | 96.3%                 | 4.802               | 1.27                           |
| Case 10 | Slot      | 3                | 1     | 96.0%                 | 4.784               | 1.11                           |
|         |           |                  |       |                       |                     |                                |

## 5. Conclusions

- Slot hood had a higher capture efficiency than a rectangular hood
- The slot hood provided uniform air flow and higher face velocity
- : There were no vortex in the plenum for slot, that is why slot had better efficiency than rectangular even though they had same face area
- The number of slot
- the smaller the number of hood face, the higher the velocity and the efficiency
- When the face velocity is maintained more than 1.0 m/s,
  - → the capture efficiency is above 90%

## 6. References

- 1. Chine, C.L., C.J. Tsai, K.W. Ku, and S.N. Li: Ventilation control of air pollutant during preventive maintenance of a metal etcher in semiconductor industry. *Aerosol Air Qual Res.* 7(4):469-488 (2007).
- 2. Choi, K.M., H.C. An, and K.S. Kim: Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes. *J. Occup. Environ. Hyg. 12*(2):114-122 (2015).