Dermal Exposure as a Result of Glove Penetration

Cejtin R., William (MS Candidate), Co-Authors: Dr. Rachael Jones and Dr. Margaret Sietsema
Division of Environmental and Occupation Health Sciences, University of Illinois at Chicago School of Public Health | Chicago, Illinois

Background

Dermal exposure is a primary route of occupational chemical exposure. Contact dermatitis, a health outcome caused by dermal exposure to chemicals, is one of the most common occupational illnesses and affects millions of workers each year. Dermal exposure can also contribute to the development of systemic disease [1]. Chemical-resistant gloves are the primary control measure used to protect against dermal exposure. Gloves are generally assumed to offer 100% protection against dermal exposure prior to break-through. There are, however, alternative mechanisms of glove failure that can lead to dermal exposure.

Aims

The overall aim of this research is to improve understanding of protection offered by gloves against dermal exposure. The specific aim of this study is to characterize dermal exposure via chemical penetration of two glove types: long-cuff and short-cuff nitrile gloves.

Methods

Participants (n = 10) were recruited and asked to simulate dishwashing in a tub using a 100-ppm fluorescein solution, once while wearing short-cuff gloves and once while wearing long-cuff gloves. Primary outcome measures:

1) surface area of contamination measured from photographs of participants’ hands under black light, and
2) mass of contamination measured as the fluorescein mass extracted from the hands using the glove juice method.

Statistical Analysis:

1) Compared left and right hands using paired t-test
2) Compared mass and surface area contamination using Pearson’s correlation
3) Compared outcome measures between glove types using paired t-test
4) Descriptive statistics to summarize outcome measures by glove type

Results

Table I. Comparison of contamination on left and right hands using paired t-test shows no significant differences.

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Mean Difference</th>
<th>SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of Contamination (µg)</td>
<td>1.92</td>
<td>9.44</td>
<td>0.54</td>
</tr>
<tr>
<td>Surface Area of Contamination (cm²)</td>
<td>9.44</td>
<td>21.72</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table II. Descriptive Statistics for total (right + left hands) dermal contamination outcome measures by glove type; paired t-test shows no significant difference between glove types.

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Short-Cuff Gloves</th>
<th>Long-Cuff Gloves</th>
<th>Paired T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>Range</td>
<td>% ND*</td>
</tr>
<tr>
<td>Mass of Contamination (µg)</td>
<td>2.81</td>
<td>4.19</td>
<td>0.05-12.7</td>
</tr>
<tr>
<td>Surface Area of Contamination (cm²)</td>
<td>1.08</td>
<td>2.35</td>
<td>0.96-6.97</td>
</tr>
</tbody>
</table>

*%ND is percent with non-detectable contamination

Figure 1. Correlation between surface area of contamination (cm²) and mass of contamination (µg).

Limitations

- The study had a small sample size, limiting statistical power. An additional 10 participants performed the simulation with a 20-ppm fluorescein solution and those results were all non-detect.
- Future work will consider washing “style”, tightness of glove at the wrist, and will examine gloves post-simulation for damage to glove material.

Conclusions

- The visible limit of detection for fluorescein contamination appears to be a mass of contamination of 5 µg (Figure 1).
- The short-cuff and long-cuff gloves resulted in the same amount of contamination.
- In the absence of permeation, dermal exposure occurred in this study indicating that material was able to penetrate the glove.
- Glove selection should consider permeation and penetration. A glove protection factor could capture glove performance on both of these dimensions [2].

Acknowledgements

- This study was supported by the Grant Number, T42OH008672, funded by the CDC/NIOSH.
- I would like to acknowledge my committee members, Dr. Rachael Jones, Dr. Margaret Sietsema, and Dr. Lorraine Conroy for their support and guidance throughout the duration of this study.

References