Permethrin: An Assessment of Exposure During Spray Application

Lynnea Jensen1, Jon Sharp1, James English1, James Dunford1, Nicholas Schaal1,2, Alex Stubner1
1Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland
2Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright Patterson AFB, Ohio

Abstract

Objective: Multi-route exposure assessment for permethrin during the manual treatment of military uniforms with 40% permethrin.

Background: Potential exposures to Working Party have not been studied and were not considered during permethrin safety label development. Working party typically only wear nitrile gloves for PPE and are not prescribed to maintain distance from spraying.

Methods: Dermal sampling: dermal patches and dosimeter gloves analyzed potential exposure. Urine sampling: measured cis- and trans- 3,4,4'- dichlorobenzyl(3,3-diethyl-1-cyclopropene) carboxylic acid, or DCCA, as measure of absorbed dose. Air sampling: measured aerosol and vapor phases of permethrin with OHMA Versatile Samplers (OVS-2) (Fig 1), and permethrin droplets with Florida Latham Bonds (FLB) rotating impactors (Fig 2).

Results: Study showed no evidence that permethrin exposures to WP were different than to Applicator. Impactors found permethrin in air did not decrease when collected at increased distances from spray line.

Conclusions: Findings showed the importance of PPE for WP and Applicator because potential exposures were not statistically different. Permuthrin in air did not decrease within distances from spray line sampled in this study.

Introduction

DoD has used permethrin for the treatment of uniforms since 1980s for added protection from disease vectors. It can be applied to uniforms via factory application, manual spray application by certified applicators, and personal application methods.

Permethrin exposure during a manual spray is possible through ingestion, inhalation, and dermal routes. Two potentially exposed populations:

- Applicators (Fig 3) - certified personnel assigned to mix, spray, and direct functions of a manual spray event.
- Working Party (WP) (Fig 4) - personnel assigned to assist with laying out, filling, and collecting uniforms during a manual spray event.

- Limited human data. Local or systemic potential health effects depending on exposure route, dose, duration, and individual variances.

Methods

Uniforms were laid out in-line. Air samples placed at distances from spray line at 0.5, 1.0, 2.5, and 3.5 feet from the downwind axis (Fig 5).

Dermal (n = 26)

- Cotton dosimeter gloves worn over nitrile gloves: NIOSH 9204 (draft, Fig 6.)
- a-cellulose patches (Fig 6.) on right forearm: OSHA in-house Method.
- t-test compared Applicator and WP means.

Urine (n = 29)

- Collected at baseline, 4-hour, and 12-24-hour.
- Treated for the metabolites cis- and trans- DCCA.
- Two-way repeated measures ANOVA to test if there were significant differences in mean DCCA.
- t-test compared the trans/cis isomeric ratio to indicate exposure route.

Air (n = 36)

- Two samples: OVS-2 and FLB impactors (Fig 7.)
- OVS-2 tubes collect vapor and aerosol phases: OSHA Method 70.
- FLB impaction captured droplets in air: volume-weighted particle-size distribution at distances from spray line.
- Repeated Measures ANOVA: compared mean droplet volume between distances from spray line, the first and last 25% and middle 50% (Fig 5).

Results

Dermal: This study did not provide evidence that dermal permethrin exposures, measured in gloves (t = 0.83 and patches (t = 0.45), are different between Applicator and WP (Tables 1. and 2.).

Urine: Due to COVID-19 circumstances, urine has not yet been analyzed.

Air:

- All values of permethrin measured on OVS-2 tubes below LOQ (0.44g), indicating the need for longer sampling time or increased flow rate.
- The average droplet density was not statistically different (t = 0.39) between the sampling zones.

Table 1. Dermal Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>1st Qu.</th>
<th>Median</th>
<th>3rd Qu.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Party</td>
<td>0.6</td>
<td>1.3</td>
<td>1.8</td>
<td>2.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Applicator</td>
<td>0.6</td>
<td>1.3</td>
<td>1.8</td>
<td>2.3</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Table 2. Statistical Analysis Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Statistical Test</th>
<th>Comparison</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goggles</td>
<td>H-Test</td>
<td>WP Applications</td>
<td>0.83</td>
</tr>
<tr>
<td>Patches</td>
<td>H-Test</td>
<td>WP Applications</td>
<td>0.45</td>
</tr>
<tr>
<td>FLB Slides</td>
<td>Repeated Measures ANOVA</td>
<td>Droplet volume-weighted density (Dv10,Dv55), Zone</td>
<td>0.00</td>
</tr>
<tr>
<td>OVS2</td>
<td>&lt;LOQ</td>
<td>&lt;LOQ</td>
<td>&lt;LOQ</td>
</tr>
</tbody>
</table>

Conclusion

Permethrin exposures can occur from multiple routes during manual treatment events. Air monitoring for aerosol and vapor phases were inconclusive, all values reported below LOQ. Impactors found permethrin in the air did not change within distances from tested spray line.

This study showed personnel participating in a uniform field manual spray treatment faced potential exposures to permethrin. Potential dermal exposures are not demonstrated between the Applicator and WP, yet only the Applicator is required to wear PPE. Findings confirm relevance of establishing a DAD SOP which specifically prescribes PPE requirements for all personnel and recommended distances for personnel from the spray.

References

3. World Health Organization. 2015. Specifications and Evaluations For Public Health Pesticides

Acknowledgements

Funding provided by Deployed Warfighter Protection Program, AFPMI and the Uniformed Services University of the Health Sciences NEPMUS, NECE, CIBL-Norfolk, NEPMU2 Sorana Raciuciu, Statistical Analysis USUHS

Disclaimers

This research protocol was approved by the USU IRB (USUHS-2019-032)

The views presented here are those of the author and are not to be construed as official or reflecting the views of the Public Health Service, Uniformed Services University of the Health Sciences, or the U.S. Government. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

Fig. 1: Environmental Sampling Rig

Fig. 2: FLB Impactor

Fig. 3: Certified Permeant Applicator

Fig. 4: Working Party

Fig. 5: Spray-line layout

Fig. 6: OVS-2 tube