<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page #</th>
<th>Location</th>
<th>Original Text</th>
<th>Correct Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vi</td>
<td>Alice Suter information</td>
<td>asuter@cdsnet.net</td>
<td>ahsuter@charter.net</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>Equation 3.8</td>
<td>(L_{A_{8hn}} = 10 \log \left[\frac{T}{8} \int_{0}^{T} L_{A_{eq,T}} , dt \right] = L_{A_{eq,T}} + 10 \log \left(\frac{T}{8} \right))</td>
<td>(L_{A_{8hn}} = 10 \log \left[\frac{1}{8} \int_{0}^{T} L_{A_{eq,T}} , dt \right] = L_{A_{eq,T}} + 10 \log \left(\frac{T}{8} \right))</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>Equation 3.14</td>
<td>(TWA = 16.61 \log \left[\frac{T}{8} \int_{0}^{T} L_{A_{eq,T}} , dt \right])</td>
<td>(TWA = 16.61 \log \left[\frac{1}{8} \int_{0}^{T} L_{A_{eq,T}} , dt \right] = L_{OSHA} + 16.61 \log \left(\frac{T}{8} \right))</td>
</tr>
<tr>
<td>7</td>
<td>228</td>
<td>Observed Frequency Counts</td>
<td>Class 1 (less than 85.74): 5 observations</td>
<td>Class 1 (less than 85.74): 5 observations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class 2 (85.75 to 87.24): 6 observations</td>
<td>Class 2 (85.76 to 87.23): 6 observations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class 3 (87.25 to 88.38): 4 observations</td>
<td>Class 3 (87.24 to 88.39): 4 observations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class 4 (88.39 to 89.45): 6 observations</td>
<td>Class 4 (88.40 to 89.45): 6 observations</td>
</tr>
<tr>
<td>7</td>
<td>234</td>
<td>Bottom of page</td>
<td>(P = 0.6393 - 0.0869)</td>
<td>(P = 0.6393 - 0.0869)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5524</td>
<td>0.5424</td>
</tr>
<tr>
<td>7</td>
<td>235</td>
<td>Top of Page</td>
<td>"Therefore 55.2% of the employee..."</td>
<td>"Therefore 54.2% of the employee..."</td>
</tr>
<tr>
<td>7</td>
<td>240</td>
<td>Row following equation 7.5</td>
<td>(TWA = 16.61 \log[D(%)/100(%)] + 90, \text{ dBA})</td>
<td>(L_{A_{8hn}} = 16.61 \log[D(%)/100(%)] + 90, \text{ dBA})</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page #</td>
<td>Location</td>
<td>Original Text</td>
<td>Correct Text</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>9</td>
<td>321</td>
<td>Figure 9.21 (Lower right hand figure)</td>
<td>Deflection (Hz)</td>
<td>Deflection (in)</td>
</tr>
<tr>
<td>9</td>
<td>328</td>
<td>Table 9.8-(under Engine Exhaust Silencers)</td>
<td>Low Speed <350 fpm</td>
<td>Low Speed <350 rpm</td>
</tr>
<tr>
<td>9</td>
<td>360</td>
<td>Line 5</td>
<td>"To maximize the potential noise reduction,…”</td>
<td>"To maximize the potential insertion loss,”</td>
</tr>
<tr>
<td>9</td>
<td>Same as Above</td>
<td>Line 13</td>
<td>"…can be used to estimate the noise reduction of…”</td>
<td>"…can be used to estimate the insertion loss of…”</td>
</tr>
<tr>
<td>9</td>
<td>Same as Above</td>
<td>Line 16</td>
<td>"From the chart, the noise reduction at each frequency…”</td>
<td>"From the chart, the insertion loss at each frequency…”</td>
</tr>
<tr>
<td>9</td>
<td>361</td>
<td>Figure 9.46 (y-axis label)</td>
<td>Noise Reduction (dB)</td>
<td>Insertion Loss (dB)</td>
</tr>
<tr>
<td>9</td>
<td>Same as Above</td>
<td>Figure 9.46 (Title)</td>
<td>Figure 9.46-Noise Reduction of a partial barrier.</td>
<td>Figure 9.46-Insertion Loss of a partial barrier.</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page #</td>
<td>Location</td>
<td>Original Text</td>
<td>Correct Text</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>9</td>
<td>Same as Above</td>
<td>Table 9.13 (Title)</td>
<td>Noise Reduction through the use of a partial barrier.</td>
<td>Insertion Loss through the use of a partial barrier.</td>
</tr>
<tr>
<td>9</td>
<td>Same as Above</td>
<td>Table 9.13 (Line 6)</td>
<td>Noise Reduction (dB)</td>
<td>Insertion Loss (dB)</td>
</tr>
<tr>
<td>9</td>
<td>Same as Above</td>
<td>Third Line of Text</td>
<td>"For all practical purposes, diffraction effects will limit the maximum IL (or NR)…"</td>
<td>"For all practical purposes, diffraction effects will limit the maximum IL…"</td>
</tr>
<tr>
<td>10</td>
<td>425</td>
<td>Figure 10.21 (y-axis label)</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>486</td>
<td>Figure 11.11</td>
<td>n/a</td>
<td>In the columns for 1000 Hz and 1250 Hz, there are too many dots shown. There should be 8 dots instead of 10, uniformly spaced vertically.</td>
</tr>
<tr>
<td>14</td>
<td>580</td>
<td>Table 14.3 (Row 1) Octave-Band Level (dB)</td>
<td>54.4</td>
<td>54.7</td>
</tr>
<tr>
<td>14</td>
<td>587</td>
<td>Table 14.6 (title)</td>
<td>Mean speech levels for male and female speakers in quiet</td>
<td>Mean speech levels for male and female speakers in quiet (at 1 m)</td>
</tr>
<tr>
<td>14</td>
<td>592</td>
<td>Table 14.7 (Case 1, Step 6)</td>
<td>(Last number in the column) 9.777</td>
<td>0.9777</td>
</tr>
<tr>
<td>14</td>
<td>Same as Above</td>
<td>Case 2, Step 2</td>
<td>(Fourth number in the Nᵢ column) 178.62</td>
<td>17.62</td>
</tr>
<tr>
<td>14</td>
<td>593</td>
<td>Gᵢ</td>
<td>25.7 38.8 42.2 38.8 41.6 42.7</td>
<td>-25.7 -38.8 -42.2 -38.8 -41.6 -42.7</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page #</td>
<td>Location</td>
<td>Original Text</td>
<td>Correct Text</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>15</td>
<td>604</td>
<td>First full paragraph, 1st Sentence</td>
<td>"A long-term average sound level over a 24-hour period can be used to describe the acoustical climate of a community."</td>
<td>"A long-term average sound level over a 24-hour period can be used to describe community noise."</td>
</tr>
<tr>
<td>15</td>
<td>Same as Above</td>
<td>First full paragraph, 2nd sentence</td>
<td>"…between 10:00 p.m. and 7:00 a.m. before the average is calculated."</td>
<td>"…between 10 p.m. and 7 a.m. (Equation 15.1a)."</td>
</tr>
<tr>
<td>15</td>
<td>Same as Above</td>
<td>First full paragraph, Line 7</td>
<td>"As with any average, communities with…"</td>
<td>"Communities with…"</td>
</tr>
<tr>
<td>15</td>
<td>Same as Above</td>
<td>First full paragraph, last line</td>
<td>"…at least 200 people per km(^2) is related to the population density by (EPA, 1974):"</td>
<td>"…at least 200 people per km(^2) can be estimated using Equation 15.1b (EPA, 1974)."</td>
</tr>
<tr>
<td>15</td>
<td>Same as Above</td>
<td>New equation to add</td>
<td>n/a, but should be added and called 15.1a</td>
<td>(L_{\text{dn}} = 10 \log \left(\frac{1}{24} \left[10^{L_d/10} + 9 \cdot 10^{L_n/10} \right] \right)) dBA (15.1a)</td>
</tr>
<tr>
<td>15</td>
<td>Same as Above</td>
<td>Equation 15.1</td>
<td>n/a</td>
<td>Equation should be renumbered 15.1b</td>
</tr>
</tbody>
</table>
| 15 | Same as Above | Following new 15.1a | n/a | Where,
\(L_d\) is the equivalent-continuous sound level from 7 a.m. until 10 p.m., and
\(L_n\) is the equivalent-continuous sound level from 10 p.m. until 7 a.m. |
<p>| 15 | 618 | Step 8 | "…yields A-weighted octave-band values of 47.3, 58.3, 56.9, 54.6, and 31.1 dBA, respectively." | "…yields A-weighted octave-band values of 45.3, 58.3, 56.9, 52.0, and 28.4 dBA, respectively." |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page #</th>
<th>Location</th>
<th>Original Text</th>
<th>Correct Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>621</td>
<td>Table 15.4</td>
<td>n/a (column for 250 Hz data is missing)</td>
<td>(Add column) 0.04</td>
</tr>
<tr>
<td>15</td>
<td>628</td>
<td>7th Line (from bottom of page)</td>
<td>"The DNL existing in the community can be estimated from sound measurements or from Table 15.7 or from Equation 15.1."</td>
<td>"The DNL existing in the community can be estimated from sound measurements using Equation 15.1a, or from Table 15.7, or using Equation 15.1b."</td>
</tr>
<tr>
<td>15</td>
<td>630</td>
<td>Line 3 (in shaded box)</td>
<td>"Actual DNL for the two communities can be estimated to be 53 and 56 dBA using Equation 15.1."</td>
<td>"Actual DNL for the two communities can be estimated to be 53 and 56 dBA using Equation 15.1b."</td>
</tr>
<tr>
<td>16</td>
<td>650</td>
<td>Row 2 (under MSHA)</td>
<td>"Audiograms must be reviewed within 30 days and feedback provided in writing to each miner within 30 days thereafter."</td>
<td>"Audiograms must be reviewed within 30 days and feedback provided in writing to each miner within 10 days thereafter."</td>
</tr>
<tr>
<td>16</td>
<td>650</td>
<td>Row 5 (under MSHA)</td>
<td>"Notify worker within 10 days: unless STS is not work-related,..."</td>
<td>"Within 30 days of receiving evidence or confirmation of STS: unless STS is not work-related,..."</td>
</tr>
</tbody>
</table>