AIHA VIDEO SERIES:
MAKING ACCURATE EXPOSURE RISK DECISIONS

Video 2:
Introduction to Bayesian Statistical Approaches and Their Advantages
Although the information contained in this session has been compiled from sources believed to be reliable, the presenter and AIHA® make no guarantee as to, and assumes no responsibility for, the correctness, sufficiency, or completeness of such information.

Since standards and codes vary from one place to another, consult with your local Occupational or Environmental Health and Safety professional to determine the current state of the art before applying what you learn from this webinar.

AIHA must ensure balance, independence, objectivity, and scientific rigor in its educational events. Instructors are expected to disclose any significant financial interests or other relationships. The intent of this disclosure is not to prevent an instructor from presenting, but to provide participants with information to base their own judgments. It remains up to the participant to determine whether an instructor’s interests or relationships may influence the presentation.

Session presentation material belongs to the presenter with usage rights given to AIHA. This session and associated materials can be reproduced, rebroadcast, or made into derivative works without express written permission.

Please refer to your handout for the next 2 slides, containing information on AIHA’s Disclaimer and Copyright information.
Handout Information

All AIHA University session handouts are produced by AIHA as submitted by the instructors, and in the instructor determined order. AIHA does not change or modify handout content; we may adjust images to improve layout and clarity.
AGENDA

• Review: Key points from Video 1A
• Focus on the 95%ile's Distribution of Uncertainty
• Bayesian Decision Analysis (BDA)
• General Approach
• Parameter Space
• Interpreting BDA Charts
• Examples
• Promise and Perils of Priors
• Censored Data
• Priors/Parameter Space: IHDA Student vs. Expostats
• Summary: Advantages of Bayesian Statistics
• Key Resources
REVIEW: KEY POINTS FROM VIDEO 1A
AIHA Exposure Rating and Control Categories
Increase Efficiency and Effectiveness

• Avoid diminishing returns from “over-refining” exposure estimates
• Streamline Documentation
• Facilitate Qualitative Exposure Judgements
• Drive consistent follow-up management and control activities which lead to consistent risk management.
Decision Statistic:
“Strive for at least 95% confidence that the true 95th percentile is less than the OEL”
Inferential Statistics to Manage Variability and Low Sample Numbers . . .

Estimate From What We Looked At (Our Five Samples) . . .

Using Knowledge of Underlying Shape (Lognormal Distribution) . . .

The Actual Population Exposure Profile (SEG of 10 Workers)
Judgement Accuracy is Poor If We Don’t Use Statistical Tools When We Have Monitoring Data

Video Tasks: Quantitative Judgment Accuracy
Pre- and Post- Statistical Training

Use Statistical Tools!!

Traditional Statistics

Bayesian Statistics

Fix ITSTAT
Use Statistical Tools!!

Traditional Statistics

Bayesian Statistics

Focus on Bayesian Statistics

Fix ITSTAT
FOCUS ON THE 95%ILE’S DISTRIBUTION OF UNCERTAINTY
Let’s focus in on the distribution of uncertainty around the 95%ile Point Estimate . . .

\begin{align*}
n &= 100 \\
n &= 5
\end{align*}
Let’s focus in on the distribution of uncertainty around the 95%ile Point Estimate . . .

n=100

n=5
Let’s focus in on the distribution of uncertainty around the 95%ile Point Estimate . . .

. . . .To think about what that uncertainty tells us about the likelihood that the true 95%ile is in each of the AIHA Categories. . .
Let’s focus in on the distribution of uncertainty around the 95%ile Point Estimate . . .

. . . .To think about what that uncertainty tells us about the likelihood that the true 95%ile is in each of the AIHA Categories. . .
Exposure Rating Category*	0 (<1% of OEL)	1 (<10% of OEL)	2 (10-50% of OEL)	3 (50-100% of OEL)	4 (>100% of OEL)	Multiples of OEL (>500% of OEL or others based on respirator APF)
Recommended Control | No action | Procedures and Training; General Hazard Communication | + Chemical Specific Hazard Communication; Periodic Exposure Monitoring, | + Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring | + Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection. | + Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators

Sample Results (ppm) | 18 | 15 | 5 | 8 | 12

OEL = 100 ppm
GM = 10.5 ppm
GSD = 1.67
95%ile = 24.5 ppm
95%ile UCL1,95 = 91.6 ppm

Distribution of SEG Exposures (Exposure Profile)
Sample Results (ppm)

<table>
<thead>
<tr>
<th>Exposure Rating Category*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<1% of OEL)</td>
<td>18</td>
<td>15</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

OEL = 100 ppm

GM = 10.5 ppm

GSD = 1.67

95%ile = 24.5 ppm

95%ile UCL\(_{1.95}\) = 91.6 ppm

Distribution of SEG Exposures (Exposure Profile)
OEL = 100 ppm
GM = 10.5 ppm
GSD = 1.67
95%ile = 24.5 ppm
95%ile UCL_{1.95} = 91.6 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>18</th>
<th>15</th>
<th>5</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
</table>

95%ile = 24.5 ppm
95%ile UCL_{1.95} = 91.6 ppm

<table>
<thead>
<tr>
<th>Exposure Rating Category*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<1% of OEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<10% of OEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10-50% of OEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50-100% of OEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(>100% of OEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiples of OEL (>500% of OEL or others based on respirator APF)
Exposures

<table>
<thead>
<tr>
<th>Exposure Rating Category*</th>
<th>0 (<1% of OEL)</th>
<th>1 (<10% of OEL)</th>
<th>2 (10-50% of OEL)</th>
<th>3 (50-100% of OEL)</th>
<th>4 (>100% of OEL)</th>
<th>Multiples of OEL (>100% of OEL or others based on respirator APF)</th>
</tr>
</thead>
</table>

OEL = 100 ppm

Sample Results (ppm)

- 18
- 15
- 5
- 8
- 12

GM = 10.5 ppm

GSD = 1.67

95%ile = 24.5 ppm

95%ile UCL_{1.95} = 91.6 ppm

Focus on the 95%ile uncertainty

- **95%ile point estimate**
- **95%ile upper confidence limit for the 95%ile estimate**
- **Distribution of Uncertainty in 95%ile Estimate**

Distribution of SEG Exposures (Exposure Profile)

- **95% upper confidence limit for the 95%ile estimate**
- **UCL_{1.95}**

95%ile point estimate

Uncertainty

95%ile point estimate

UCL_{1.95}

OEL

GM = 10.5 ppm

GSD = 1.67

95%ile = 24.5 ppm

95%ile UCL_{1.95} = 91.6 ppm

Focus on the 95%ile uncertainty

Distribution of Uncertainty in 95%ile Estimate

Distribution of SEG Exposures (Exposure Profile)

95%ile point estimate

UCL_{1.95}

OEL

GM = 10.5 ppm

GSD = 1.67

95%ile = 24.5 ppm

95%ile UCL_{1.95} = 91.6 ppm

Focus on the 95%ile uncertainty

Distribution of Uncertainty in 95%ile Estimate

Distribution of SEG Exposures (Exposure Profile)

95%ile point estimate

UCL_{1.95}

OEL

GM = 10.5 ppm

GSD = 1.67

95%ile = 24.5 ppm

95%ile UCL_{1.95} = 91.6 ppm
95%ile point estimate uncertainty

95%ile estimate

95% upper confidence limit for the 95%ile estimate

Distribution of Uncertainty in 95%ile Estimate

Focus on the 95%ile uncertainty

OEL = 100 ppm
GM = 10.5 ppm
GSD = 1.67
95%ile = 24.5 ppm
95%ile UCL_{1.95} = 91.6 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>18</th>
<th>15</th>
<th>5</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
</table>

OEL

95% percentile upper confidence limit (UCL)

0 (<1% of OEL)
1 (<10% of OEL)
2 (10-50% of OEL)
3 (50-100% of OEL)
4 (>100% of OEL)

0 (0% of OEL)
1 (1% of OEL)
2 (2% of OEL)
3 (3% of OEL)
4 (4% of OEL)
5 (5% of OEL)
6 (6% of OEL)
7 (7% of OEL)
8 (8% of OEL)
9 (9% of OEL)
10 (>10% of OEL)

Distribution of Uncertainty in 95%ile Estimate
Most of the 95%ile probability is in Category 2
The next most likely is Category 3
There is a small probability of Category 4
There is almost no probability that the 95%ile is in Categories 0 or 1

Sample Results (ppm)

<table>
<thead>
<tr>
<th>18</th>
<th>15</th>
<th>5</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
</table>

OEL = 100 ppm
GM = 10.5 ppm
GSD = 1.67
95%ile = 24.5 ppm
95%ile UCL_{1.95} = 91.6 ppm
Sample Results (ppm)

<table>
<thead>
<tr>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

OEL = 100 ppm
GM = 10.5 ppm
GSD = 1.67
95%ile = 24.5 ppm
95%ile UCL_{1.95} = 91.6 ppm

Focus on the 95%ile uncertainty

- Most of the 95%ile probability is in Category 2
- The next most likely is Category 3
- There is a small probability of Category 4
- There is almost no probability that the 95%ile is in Categories 0 or 1

Bayesian Decision Analysis (BDA)
BAYESIAN DECISION ANALYSIS
Statistical Approaches to Understanding the Exposure Profile

Ethanol
OEL = 1000 ppm

Monitoring Results:
215 ppm
52 ppm
395 ppm
700 ppm
75 ppm

Traditional IH Statistics

Best Estimate of the Exposure Distribution and its 95%ile and UTL_{95%,95%} (same as 95%ile UCL_{1.95%})

UTL_{95%,95%} = 18,700 ppm

95%ile = 1140 ppm

GM=188
GSD=3

Concentration (ppm)
Statistical Approaches to Understanding the Exposure Profile

Ethanol

OEL = 1000 ppm

Monitoring Results:
215 ppm
52 ppm
395 ppm
700 ppm
75 ppm

Traditional IH Statistics

Best Estimate of the Exposure Distribution and its 95%ile and UTL_{95,95%} (same as 95%ile UCL_{1,95%})

GM = 188
GSD = 3

95%ile = 1140 ppm

UTL_{95,95%} = 18,700 ppm
Statistical Approaches to Understanding the Exposure Profile

Ethanol
OEL = 1000 ppm

Monitoring Results:
215 ppm
52 ppm
395 ppm
700 ppm
75 ppm

Bayesian Decision Analysis (BDA)
Depiction of 95%ile and its Uncertainty Relative to AIHA Categories

Exposure Rating Category
OEL

Likelihood that 95%ile falls into indicated Exposure Rating Category

Relative to AIHA Categories
Bayesian Decision Analysis (BDA)

- An adjunct or alternative to the calculation and interpretation of traditional statistics.
- Characterize 95%ile and its uncertainty
- The goal of BDA is to estimate the probability that the true exposure profile 95%ile falls into a particular category, or AIHA Exposure Rating.

![Likelihood and Decision Probability Chart]

IHDA Student

![Exposure Rating Distribution Chart]

Expostats
Easier to Interpret!
Easier to Communicate!

- BDA output gives probabilities - easier for people to understand than traditional confidence intervals
- The uncertainty associated with small data sets shows up clearly so risk can be better communicated
Exposure Rating Category** Recommended Control

<table>
<thead>
<tr>
<th>Exposure Rating Category**</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>1 (<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2 (10-50% of OEL)</td>
<td>+ Chemical Specific Hazard Communication; Periodic Exposure Monitoring,</td>
</tr>
<tr>
<td>3 (50-100% of OEL)</td>
<td>+ Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>4 (>100% of OEL)</td>
<td>+ Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection, +Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators</td>
</tr>
<tr>
<td>Multiples of OEL (>500% of OEL or others based on respirator APF)</td>
<td>+Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators</td>
</tr>
</tbody>
</table>

Follow-up is Straightforward
Quickly Summarize Exposure Scenarios
Bayesian Decision Analysis: Focus on Decision Making and Follow-Up Actions

- BDA helps us determine the probability that the true exposure profile 95%ile falls within each of the five AIHA exposure categories (i.e., OEL-specific control zones)
- ...so that a decision about the appropriate exposure control category can be made with greater accuracy,
- ...and that decision leads to actions.

<table>
<thead>
<tr>
<th>Exposure Rating Category**</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>1 (<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2 (10-50% of OEL)</td>
<td>+ Chemical Specific Hazard Communication; Periodic Exposure Monitoring.</td>
</tr>
<tr>
<td>3 (50-100% of OEL)</td>
<td>+ Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls, Medical Surveillance, Biological Monitoring.</td>
</tr>
<tr>
<td>4 (>100% of OEL)</td>
<td>+ Implement Hierarchy of Controls, Monitoring to Validate Respirator Protection Factor Selection.</td>
</tr>
<tr>
<td>Multiples of OEL (>100% of OEL or others based on respirator APF)</td>
<td>+ Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators.</td>
</tr>
</tbody>
</table>
BDA Chart NOT the same as the Exposure Distribution

95\%ile Uncertainty Expressed as Likelihood that the 95\%ile is in an AIHA Exposure Rating and Control Category

Best Guess Exposure Frequency Distribution (SEG Exposure Profile)

OEL = 100 ppm
\(x = 13 \) ppm, 26 ppm, 18 ppm
GM = 18.2
GSD = 1.41
95th \%ile = 32.3 ppm
UTL \(95\% \), 95\% = 260 ppm

\[\neq \]
BDA Chart NOT the same as the Exposure Distribution

OEL = 100 ppm

n=3, x = 13, 26, 18
GM = 18.2
GSD = 1.41
95th %ile = 32.3 ppm
UTL, 95%, 95% = 260 ppm
BDA Chart NOT the same as the Exposure Distribution

OEL = 100 ppm

\[n=3, \, x = 13, \, 26, \, 18 \]
\[\text{GM} = 18.2 \]
\[\text{GSD} = 1.41 \]
\[95\text{th} \%\text{ile} = 32.3 \text{ ppm} \]
\[\text{UTL} = 95\%, \, 95\% = 260 \text{ ppm} \]

Likelihood that the 95\%ile is in an AIHA Exposure Rating and Control Category

SEG Exposure Frequency Distribution (SEG Exposure Profile)

\[\neq \]

Likelihood

Decision Category

Exposure Rating

Likelihood

Best Estimate

95% Upper Confidence
BDA Chart NOT the same as the Exposure Distribution

OEL = 100 ppm

\(n=3 \), \(x = 13, 26, 18 \)
GM = 18.2
GSD = 1.41
95th %ile = 32.3 ppm
UTL 95%, 95% = 260 ppm

\(n=6 \), \(x = 13, 26, 18, 22, 8, 17 \)
GM = 16.2
GSD = 1.52
95th %ile = 32.3 ppm
UTL 95%, 95% = 76.6 ppm
BDA Chart NOT the same as the Exposure Distribution

OEL = 100 ppm

\(n=3, x = 13, 26, 18 \)
GM = 18.2
GSD = 1.41
95th %ile = 32.3 ppm
UTL 95%, 95% = 260 ppm

\(n=6, x = 13, 26, 18, 22, 8, 17 \)
GM = 16.2
GSD = 1.52
95th %ile = 32.3 ppm
UTL 95%, 95% = 76.6 ppm

\(n=10, x = 13, 26, 18, 22, 8, 17, 19, 12, 16, 17 \)
GM = 16.0
GSD = 1.39
95th %ile = 27.7 ppm
UTL 95%, 95% = 42.2 ppm
GENERAL APPROACH
Traditional IH Statistics

Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty.

<table>
<thead>
<tr>
<th>Sample results (ppm)</th>
<th>0.18</th>
<th>0.25</th>
<th>0.1</th>
<th>0.36</th>
<th>0.33</th>
<th>0.15</th>
</tr>
</thead>
</table>

OEL = 1 ppm
Traditional IH Statistics

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>OEL = 1 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty.

Bayesian Approach

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).
Traditional IH Statistics

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>0.18</th>
<th>0.25</th>
<th>0.1</th>
<th>0.36</th>
<th>0.33</th>
<th>0.15</th>
</tr>
</thead>
</table>

Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty.

Bayesian Approach

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).
Traditional IH Statistics

<table>
<thead>
<tr>
<th>OEL = 1 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample results (ppm)</td>
</tr>
<tr>
<td>0.18</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.36</td>
</tr>
<tr>
<td>0.33</td>
</tr>
<tr>
<td>0.15</td>
</tr>
</tbody>
</table>

Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty.

Bayesian Approach

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).
Traditional IH Statistics

OEL = 1 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Bayesian Approach

Define "universe" of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).

Calculate likelihood that sample data came from each exposure profile in the universe

- **OEL = 1 ppm**
 - Best Estimate
 - 95% Upper Confidence
 - 95%ile OEL

OEL = 1 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
Traditional IH Statistics

Use sample results, along with understanding of underlying population shape (e.g. lognormal), to calculate best estimate of true population (e.g. SEG) exposure profile and its uncertainty.

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>OEL = 1 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Bayesian Approach

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).

Calculate likelihood that sample data came from each exposure profile in the universe.

Sum and normalize likelihoods for all universe exposure profiles having 95%iles in each exposure category.

OEL = 1 ppm
Bayesian Approach: Extremely Powerful and Flexible

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).

Calculate likelihood that sample data came from each exposure profile in the universe.

Sum and normalize likelihoods for all universe exposure profiles having 95%iles in each exposure category.

OEL = 1 ppm

Sample Results (sum)

0.18
0.25
0.36
0.33
0.15

GM

OEL = 1 ppm

Sample Results (sum)

0.18
0.25
0.36
0.33
0.15

GM
Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).

Calculate likelihood that sample data came from each exposure profile in the universe

Sum and normalize likelihoods for all universe exposure profiles having 95%iles in each exposure category

Bayesian Approach: Extremely Powerful and Flexible

The Parameter Space “Universe” can be adjusted and weighted according to prior knowledge about possible lognormal exposure profiles and their relative plausibility of occurrence.

Parameter Space

GSD

GM

OEL = 1 ppm

Sample Results (sum)

0.18

0.25

0.1

0.36

0.33

0.15

0% 1% 2% 5% 10% 50% 90% 95% 99% 99.99%
Bayesian Approach: Extremely Powerful and Flexible

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying 95%ile).

Calculate likelihood that sample data came from each exposure profile in the universe

Sum and normalize likelihoods for all universe exposure profiles having 95%iles in each exposure category

The Parameter Space “Universe” can be adjusted and weighted according to prior knowledge about possible lognormal exposure profiles and their relative plausibility of occurrence.

The outcome is weighted according to how plausible each lognormal exposure profile was deemed in advance as defined in the Parameter Space universe.
Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying parameter).

Calculate likelihood that sample data came from each exposure profile in the universe.

Sum and normalize likelihoods for all universe exposure profiles to characterize the uncertainty distribution of any parameter of interest which can be further explored.

Bayesian Approach: Extremely Powerful and Flexible

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying parameter).

Calculate likelihood that sample data came from each exposure profile in the universe.

Sum and normalize likelihoods for all universe exposure profiles to characterize the uncertainty distribution of any parameter of interest which can be further explored.
Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying parameter).

Calculate likelihood that sample data came from each exposure profile in the universe.

Sum and normalize likelihoods for all universe exposure profiles to characterize the uncertainty distribution of any parameter of interest which can be further explored.
Bayesian Approach: Extremely Powerful and Flexible

Define “universe” of possible lognormal exposure profiles (each GM - GSD combination with accompanying parameter).

Calculate likelihood that sample data came from each exposure profile in the universe.

Sum and normalize likelihoods for all universe exposure profiles to characterize the uncertainty distribution of any parameter of interest which can be further explored.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bayesian Point Estimate</th>
<th>Bayesian 90% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>0.21 ppm</td>
<td>0.14 - 0.32 ppm</td>
</tr>
<tr>
<td>GSD</td>
<td>1.8</td>
<td>1.4 - 2.8</td>
</tr>
<tr>
<td>95%ile</td>
<td>0.534 ppm</td>
<td>0.335 - 1.35 ppm</td>
</tr>
<tr>
<td>Exceedance Fraction (% > OEL)</td>
<td>0.325 %</td>
<td>0.000496 - 9.11 %</td>
</tr>
<tr>
<td>AM (Arithmetic Mean)</td>
<td>0.247 ppm</td>
<td>0.17 - 0.455 ppm</td>
</tr>
</tbody>
</table>

Bayesian Approach: Extremely Powerful and Flexible

Parameter Bayesian Point Estimate Bayesian 90% Credible Interval
GM 0.21 ppm 0.14 - 0.32 ppm
GSD 1.8 1.4 - 2.8
95%ile 0.534 ppm 0.335 - 1.35 ppm
Exceedance Fraction (% > OEL) 0.325 % 0.000496 - 9.11 %
AM (Arithmetic Mean) 0.247 ppm 0.17 - 0.455 ppm

OEL = 1 ppm
Sample Results (sum) 0.18 0.25 0.1 0.36 0.33 0.15

Parameter Uncertainty Distribution

Total Area Under the Curve = 100%

90% Credible Interval 5%
e.g. Further Explore 95%ile Likelihood Distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bayesian Point Estimate</th>
<th>Bayesian 90% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%ile</td>
<td>0.534 ppm</td>
<td>0.335 - 1.35 ppm</td>
</tr>
</tbody>
</table>

OEL = 1 ppm

Sample Results (ppm)

| 0.18 | 0.25 | 0.1 | 0.36 | 0.33 | 0.15 |

Sliced to Explore Likelihood that 95%ile Exceeds the OEL.
e.g. Further Explore 95%ile Likelihood Distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bayesian Point Estimate</th>
<th>Bayesian 90% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%ile</td>
<td>0.534 ppm</td>
<td>0.335 - 1.35 ppm</td>
</tr>
</tbody>
</table>

Sliced to Explore Likelihood that 95%ile Exceeds the OEL

Sliced to Explore Likelihood that 95%ile is in Each of the AIHA Exposure Control Categories

OEL = 1 ppm
Sample Results (ppm)
0.18
0.25
0.36
0.33
0.15
PARAMETER SPACE
Parameter Space
Defined Properties of the Universe of Lognormal Exposure Profiles to be Considered in the Bayesian Analysis

Exposure Ratings translated into parameter space for OEL=1ppm

<table>
<thead>
<tr>
<th>Exposure Rating</th>
<th>Cutoff (%OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$X_{25} \leq 1%$</td>
</tr>
<tr>
<td>1</td>
<td>$1% < X_{25} \leq 5%$</td>
</tr>
<tr>
<td>2</td>
<td>$5% < X_{25} \leq 50%$</td>
</tr>
<tr>
<td>3</td>
<td>$50% < X_{25} \leq 100%$</td>
</tr>
<tr>
<td>4</td>
<td>$X_{25} > 100%$</td>
</tr>
</tbody>
</table>
Parameter Space
Defined Properties of the Universe of Lognormal Exposure Profiles to be Considered in the Bayesian Analysis

Exposure Ratings translated into parameter space for OEL=1ppm

Each point defines a single unique lognormal distribution.

e.g. GSD=2.1, GM=0.11

<table>
<thead>
<tr>
<th>Exposure Rating</th>
<th>Cutoff (%OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X_{50} ≤ 1%</td>
</tr>
<tr>
<td>1</td>
<td>1% < X_{50} ≤ 10%</td>
</tr>
<tr>
<td>2</td>
<td>10% < X_{50} ≤ 50%</td>
</tr>
<tr>
<td>3</td>
<td>50% < X_{50} ≤ 100%</td>
</tr>
<tr>
<td>4</td>
<td>X_{50} > 100%</td>
</tr>
</tbody>
</table>
Parameter Space
Defined Properties of the Universe of Lognormal Exposure Profiles to be Considered in the Bayesian Analysis

For OEL=1 the 95th percentile of a lognormal distribution with GSD=2.1 and GM=0.11 is in Category 2.

<table>
<thead>
<tr>
<th>Exposure Rating</th>
<th>Cutoff (% OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(X_{95} \leq 1%)</td>
</tr>
<tr>
<td>1</td>
<td>1% < (X_{95} \leq 10%)</td>
</tr>
<tr>
<td>2</td>
<td>10% < (X_{95} \leq 50%)</td>
</tr>
<tr>
<td>3</td>
<td>50% < (X_{95} \leq 100%)</td>
</tr>
<tr>
<td>4</td>
<td>(X_{95} > 100%)</td>
</tr>
</tbody>
</table>
Likelihood That the Sample Data Come From Each Lognormal Exposure Profile in Pre-Defined Parameter Space

Sample Results (ppm)

| 0.15 | 0.2 | 0.05 |

OEL = 1 ppm
GM = 0.11 ppm
GSD = 2.1
95%ile = 0.4 ppm
UCL95,95 = 31.0 ppm
Likelihood That the Sample Data Come From Each Lognormal Exposure Profile in Pre-Defined Parameter Space

Sample Results (ppm)

<table>
<thead>
<tr>
<th>OEL = 1 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM = 0.11 ppm</td>
</tr>
<tr>
<td>GSD = 2.1</td>
</tr>
<tr>
<td>95%ile = 0.4 ppm</td>
</tr>
<tr>
<td>UCL95,95 = 31.0 ppm</td>
</tr>
</tbody>
</table>
INTERPRETING BDA CHARTS
Steps in Data Analysis and Interpretation*

1. **Enter Data Into Appropriate Statistical Tool**
2. **Evaluate the Goodness-of-fit**
3. **Review Descriptive and Inferential Statistics**
 Compare...
 - the “decision statistic” (e.g., sample 95th percentile) to the OEL.
 - the 95%UCL to the OEL.
4. **Assign a Final Rating and Certainty Level**
 - **Final Rating:** Compare the sample 95th percentile to the Exposure Control Categories (ECCs) and select a category.
 - **Certainty Level:** Compare the 95%UCL to the ECCs:
 - Low certainty if ≥ 2 categories above the chosen ECC
 - Medium certainty if only 1 category above
 - High certainty if within chosen category
5. **Document the Analysis and Recommendations**
 Recommend controls and/or PPE; work practice evaluation; additional sampling; surveillance sampling, etc.

*After Executing a Carefully Defined Monitoring Plan:
- Defined decision statistic
- Well defined SEG
- Appropriate OEL
- Well described exposure question
- Appropriate sampling strategy
- Valid and appropriate monitoring method
- Validated analytical method
Steps in Data Analysis and Interpretation*

1. Enter Data Into Appropriate Statistical Tool
2. Evaluate the Goodness-of-fit
3. Review Descriptive and Inferential Statistics
 Compare...
 - the “decision statistic” (e.g., sample 95th percentile) to the OEL.
 - the 95%UCL to the OEL.
4. Assign a Final Rating and Certainty Level
 - **Final Rating**: Compare the sample 95th percentile to the Exposure Control Categories (ECCs) and select a category.
 - **Certainty Level**: Compare the 95%UCL to the ECCs:
 - Low certainty if ≥ 2 categories above the chosen ECC
 - Medium certainty if only 1 category above
 - High certainty if within chosen category
5. Document the Analysis and Recommendations
 Recommend controls and/or PPE; work practice evaluation; additional sampling; surveillance sampling, etc.

*After Executing a Carefully Defined Monitoring Plan:
- Defined decision statistic

Use BDA to Further Inform Final Rating and Certainty Decision
BDA Charts to Assign a Final Rating and Certainty Level

- **Final Exposure Rating**
 - Exposure Control Category (ECCs) = category with highest bar

- **Certainty Level Rules of Thumb**
 - Low Certainty – decision probability is < 0.5
 - Medium Certainty – decision probability is between 0.5 and 0.75
 - High Certainty – decision probability is greater than 0.75.

Rules of thumb are guidelines, not bright lines.
Checking Likelihood of Category 4 (95%ile > OEL)

- If ECC ≤ 3, check Category 4:
 - Large Category 4 decision probabilities indicate that the true 95th percentile may exceed the OEL and therefore should be a cause for concern whenever the SEG is unlikely to be reevaluated for an extended period.
 - As a rule-of-thumb, Category 4 decision probabilities up to 0.30 are tolerable, provided the SEG is regularly checked as part of an ongoing monitoring strategy.
 - < 0.05 – acceptable
 - 0.05-0.3 – tolerable, assuming the SEG has a required monitoring plan
 - > 0.3 – problematic, particularly if the SEG has no monitoring plan.

Category 2
(Medium Certainty)

Tolerable assuming SEG has a required monitoring plan
Discussion

It is useful to think of interpreting BDA charts as a two step process:

1) What is the most likely category? (i.e. Which category has the highest likelihood bar?)

2) Is the likelihood in Category 4 less than the decision criteria for the upper percentile (e.g. is there a less-than 5% likelihood that the 95%ile is in Category 4?)
EXAMPLES
Example 1

Into which AIHA Exposure Category will the 95th percentile MOST LIKELY fall?

OEL = 100 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>15</th>
<th>26</th>
<th>18</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exposure Rating Category**</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>1 (<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2 (10-50% of OEL)</td>
<td>+ Chemical Specific Hazard Communication; Periodic Exposure Monitoring,</td>
</tr>
<tr>
<td>3 (50-100% of OEL)</td>
<td>+ Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>4 (>100% of OEL)</td>
<td>+ Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection.</td>
</tr>
<tr>
<td>Multiples of OEL (>50% of OEL or others based on respirator AF)</td>
<td>+Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators</td>
</tr>
</tbody>
</table>

* Decision statistic = 95th percentile
How do we interpret this?

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

OEL = 100 ppm
GM = 18.3
GSD = 1.41
X0.95 = 32.3
95%UCL = 260

“We have a 14% probability that Process Operator #1 requires additional exposure controls”

Likely Category 2
(Medium Certainty)
Cat 4 = 0.1-0.3: Tolerable, assuming the SEG has a monitoring plan

"We have a 14% probability that Process Operator #1 requires additional exposure controls"
Sample Results (ppm)

| 13 | 26 | 18 |

OEL = 100 ppm
GM = 18.3
GSD = 1.41
X0.95 = 32.3
95% UCL = 260

OEL = 100 ppm
GM = 18.3
GSD = 1.41
X0.95 = 32.3
95% UCL = 260

How do we interpret this?

Likely Category 2
(Medium Certainty)

Cat 4 = 0.1-0.3: Tolerable, assuming the SEG has a monitoring plan

Exposure Rating Category

<table>
<thead>
<tr>
<th>Rating</th>
<th>Category</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>1</td>
<td>(<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2</td>
<td>(10-50% of OEL)</td>
<td>Chemical Specific Hazard Communication; Periodic Exposure Monitoring</td>
</tr>
<tr>
<td>3</td>
<td>(50-100% of OEL)</td>
<td>Required Exposure Monitoring; Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>4</td>
<td>(>100% of OEL)</td>
<td>Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection</td>
</tr>
</tbody>
</table>

Action:
- Procedures and Training; Chemical Specific Hazard Communication; Periodic Exposure Monitoring,
- Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators,
Compare traditional statistics vs. BDA ...

“The population 95th percentile point estimate is 32 ppm with a 95\% upper confidence limit of 260 ppm”

“We have a 14 \% probability that Process Operator \#1 requires additional exposure controls”

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposure Rating</th>
<th>Likelihood Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.602</td>
</tr>
<tr>
<td>3</td>
<td>0.258</td>
</tr>
<tr>
<td>4</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Example 2

Into which AIHA Exposure Category will the 95th percentile MOST LIKELY fall?

OEL = 100 ppm

| Sample Results (ppm) | 13 | 26 | 18 | 32 | 18 | 13 |

Decision statistic = 95th percentile

Exposure Rating Category

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(<1% of OEL) No action</td>
</tr>
<tr>
<td>1</td>
<td>(<10% of OEL) Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2</td>
<td>(10-50% of OEL) + Chemical Specific Hazard Communication; Periodic Exposure Monitoring</td>
</tr>
<tr>
<td>3</td>
<td>(50-100% of OEL) + Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>4</td>
<td>(>100% of OEL) + Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection</td>
</tr>
</tbody>
</table>

Multiples of OEL (>50\% of OEL or others based on respirator APF) + Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators
Example Likelihood Decision Chart:

"(Given the data,) I am moderately confident that the true 95\text{th} percentile falls between 10\% and 50\% of the OEL."
Example 3
Into which AIHA Exposure Category will the 95th percentile MOST LIKELY fall?

OEL = 100 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>Exposure Rating Category**</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0 (<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>15</td>
<td>1 (<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>13</td>
<td>2 (10-50% of OEL)</td>
<td>+ Chemical Specific Hazard Communication; Periodic Exposure Monitoring</td>
</tr>
<tr>
<td>14</td>
<td>3 (50-100% of OEL)</td>
<td>+ Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>17</td>
<td>4 (>100% of OEL)</td>
<td>+ Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection.</td>
</tr>
<tr>
<td>19</td>
<td>Multiples of OEL (>500% of OEL or others based on respirator APR)</td>
<td>+ Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators</td>
</tr>
</tbody>
</table>

* Decision statistic = 95th percentile
Example Likelihood Decision Chart:

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

OEL = 100
GM = 14.8
GSD = 1.17
X0.95 = 22
95% UCL = 34

“(Given the data,) I am virtually certain that the true 95th percentile falls between 10% and 50% of the OEL.”

Likely Category 2
(High Certainty)

Cat 4 <0.05: Acceptable

Actions:
Procedures and Training; Chemical Specific Hazard Communication; Periodic Exposure Monitoring,
Example 4

Into which AIHA Exposure Category will the 95th percentile MOST LIKELY fall?

OEL = 100 ppm

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposure Rating Category**</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>1 (<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2 (10-50% of OEL)</td>
<td>+ Chemical Specific Hazard Communication; Periodic Exposure Monitoring,</td>
</tr>
<tr>
<td>3 (50-100% of OEL)</td>
<td>+ Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>4 (>100% of OEL)</td>
<td>+ Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection,</td>
</tr>
<tr>
<td>Multiples of OEL (>50% of OEL or others based on respirator APR)</td>
<td>+Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators</td>
</tr>
</tbody>
</table>

* Decision statistic = 95th percentile
Example Likelihood Decision Chart:

Sample Results (ppm)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>50</td>
<td>42</td>
</tr>
</tbody>
</table>

OEL = 100
GM = 54
GSD = 1.35
X0.95 = 126
95% UCL = 549

"(Given the data,) nearly 70% chance that exposures are unacceptable"

Likely Category 4
(Medium Certainty)

Unacceptable

Actions:
Chem. Specific Haz. Com.;
Required Exposure Monitoring; Implement Hierarchy of Controls;
Monitoring to Validate Respirator Protection Factor Selection.
More examples...

1. “given our sampling data, we have a greater than 95% probability that exposures are acceptable…”

2. “27% probability that exposures are unacceptable…”

3. “less than 10% probability that exposures exceed half the OEL . . .”

4. “greater than 95% probability that exposures require immediate exposure controls…”
Traditional & Bayesian

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>OEL = 100 ppm</th>
<th>GM = 16.8 ppm</th>
<th>GSD = 1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>95%ile = 29.5 ppm</td>
<td>95%ile UCL_{0.95} = 71.0 ppm</td>
<td>Category 2</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

>95% Confident that 95%ile < OEL

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>OEL = 100 ppm</th>
<th>GM = 52.5 ppm</th>
<th>GSD = 1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>95%ile = 141.7 ppm</td>
<td>95%ile UCL_{0.95} = 662.0 ppm</td>
<td>Category 4</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Highly Confident that 95%ile > OEL

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>OEL = 100 ppm</th>
<th>GM = 40.4 ppm</th>
<th>GSD = 1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>95%ile = 87.5 ppm</td>
<td>95%ile UCL_{0.95} = 291.0 ppm</td>
<td>Category 3? 4? Low Certainty</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not 95% Confident that 95%ile < OEL
Important to Use Statistical Analysis on Noise as Well . . .

<table>
<thead>
<tr>
<th>dBA</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.8</td>
<td>55.9</td>
</tr>
<tr>
<td>76.5</td>
<td>30.8</td>
</tr>
<tr>
<td>82.2</td>
<td>67.8</td>
</tr>
<tr>
<td>83.9</td>
<td>85.9</td>
</tr>
<tr>
<td>78.7</td>
<td>41.8</td>
</tr>
<tr>
<td>77.3</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Normally Distributed Lognormally Distributed
Assist in respirator selection: Expostats or IHDA-Student

Substitute APF x OEL for OEL in data analysis tool – Category 4 now shows the likelihood that APF x OEL will be exceeded given the data

OEL=1 ppm
n = 3
x_1 = 0.99 ppm
x_2 = 0.50 ppm
x_3 = 2.0 ppm

APF = 10
Use 10 x OEL

APF = 50
Use 50 x OEL

10.8% Likelihood of exceeding 10 x OEL

0.1% Likelihood of exceeding 50 x OEL
PROMISE AND PERILS OF PRIORS
BDA Promise of Priors:

Transparent integration of qualitative and quantitative judgments to make effective and efficient exposure decisions.

AIHA EA Strategy:
Define Exposure Using All Available Information
BDA Construct

Previous Knowledge:
What is known before the data are collected

New Knowledge Provided by the Data:
Monitoring Results

Updated Knowledge:
Integration of the Previous Knowledge and the New Data-Based Knowledge

Prior

+

Likelihood

Posterior
BDA Construct

Previous Knowledge:
What is known before the data are collected

New Knowledge Provided by the Data:
Monitoring Results

Updated Knowledge:
Integration of the Previous Knowledge and the New Data-Based Knowledge

Prior + Likelihood → Posterior
BDA Construct

Previous Knowledge:
What is known before the data are collected

New Knowledge Provided by the Data:
Monitoring Results

Updated Knowledge:
Integration of the Previous Knowledge and the New Data-Based Knowledge

Prior

Likelihood

Posterior

Sample Results (mg/mL)

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
BDA Construct

Previous Knowledge:
What is known before the data are collected

New Knowledge
Provided by the Data:
Monitoring Results

Updated Knowledge:
Integration of the Previous Knowledge and the New Data-Based Knowledge
BDA Construct

Previous Knowledge:
What is known before the data are collected

New Knowledge Provided by the Data:
Monitoring Results

Updated Knowledge:
Integration of the Previous Knowledge and the New Data-Based Knowledge

Prior

Likelihood

Posterior
1. Initial Assessment
(OEL = 100 mg/M³)
Typically Professional Judgment or
Modeling (no monitoring data)

AIHA EA Strategy:
Define Exposure Using All
Available Information
1. Initial Assessment
(OEL = 100 mg/M³)
Typically Professional Judgment or
Modeling (no monitoring data)

2. Add Monitoring Data
Resolve Uncertainty and
Validate Initial Assessment

| Sample Results (mg/M³) | 28 | 12 | 4 | 8 |

AIHA EA Strategy:
Define Exposure Using All
Available Information
1. Initial Assessment (OEL = 100 mg/M³)
Typically Professional Judgment or Modeling (no monitoring data)

2. Add Monitoring Data
Resolve Uncertainty and Validate Initial Assessment

<table>
<thead>
<tr>
<th>Sample Results (mg/M³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

3. Integrated Assessment

Qualitative Modeling Monitoring

Prior

Likelihood

Posterior

1. Initial Assessment
(OEL = 100 mg/M³)
Typically Professional Judgment or Modeling (no monitoring data)

2. Add Monitoring Data
Resolve Uncertainty and Validate Initial Assessment

<table>
<thead>
<tr>
<th>Sample Results (mg/M³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

3. Integrated Assessment

Qualitative Modeling Monitoring
Integrated Exposure Assessment Result Leads to Control Recommendations

<table>
<thead>
<tr>
<th>Exposure Rating Category**</th>
<th>Recommended Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (<1% of OEL)</td>
<td>No action</td>
</tr>
<tr>
<td>1 (<10% of OEL)</td>
<td>Procedures and Training; General Hazard Communication</td>
</tr>
<tr>
<td>2 (10-50% of OEL)</td>
<td>+ Chemical Specific Hazard Communication; Periodic Exposure Monitoring</td>
</tr>
<tr>
<td>3 (50-100% of OEL)</td>
<td>+ Required Exposure Monitoring, Workplace Inspections to Verify Work Practice Controls; Medical Surveillance, Biological Monitoring</td>
</tr>
<tr>
<td>4 (>100% of OEL)</td>
<td>+ Implement Hierarchy of Controls; Monitoring to Validate Respirator Protection Factor Selection</td>
</tr>
<tr>
<td>Multiples of OEL (>500% of OEL or others based on respirator APF)</td>
<td>+ Immediate Engineering Controls or Process Shut Down, Validate Acceptable Respirators</td>
</tr>
</tbody>
</table>
Prior

No previous information included beyond parameter space assumptions

Likelihood

Based on monitoring data:
OEL = 100 mg/M³
n = 4
x = {28, 12, 4, 8} mg/M³

Posterior

Assign an a priori probability to each Exposure Rating zone based on qualitative judgment or model.
Prior
No previous information included beyond parameter space assumptions

Likelihood
Based on monitoring data:
OEL=1 ppm
n = 3
x = {0.20, 0.1, 0.7} ppm

Posterior

Non-informative “Uniform” or “Flat” Prior

Informative Prior
Assign an a priori probability to each Exposure Rating zone based on qualitative judgment or model

Prior
Exposure Rating
0 1 2 3 4

Likelihood
Exposure Rating
0 1 2 3 4

Posterior
Exposure Rating
0 1 2 3 4

Prior
Exposure Rating
0 1 2 3 4

Likelihood
Exposure Rating
0 1 2 3 4

Posterior
Exposure Rating
0 1 2 3 4

Student Version

OEL=1 ppm
n = 3
x = {0.20, 0.1, 0.7} ppm

No previous information included beyond parameter space assumptions

Assign an a priori probability to each Exposure Rating zone based on qualitative judgment or model

Prior
Exposure Rating
0 1 2 3 4

Likelihood
Exposure Rating
0 1 2 3 4

Posterior
Exposure Rating
0 1 2 3 4

Student Version
Critical Point

A non-informative, or “flat” prior should always be used unless the industrial hygienist has a validated qualitative exposure assessment on which to base an informative prior.
BDA Peril of Priors:

Qualitative Judgments Often Not Accurate

Video Tasks – Qualitative Judgments

Pre- and Post-Checklist Training Accuracy Practicing OSH Professionals

NIOSH Funded U of MN Study Actual Workplace Assessments - Qualitative Judgments

Accuracy not significantly different from random chance.

Accuracy Doubled with Checklist Training and Use

Pre-training accuracy not significantly different from random chance.

Pre-training accuracy significantly different than random chance.
How Can We Improve Our Qualitative Judgments?

- Systematic Exposure Decision Process
- Document Results and Rationale for Judgments
e.g. Checklist Tool
- Document Exposure Determinants
e.g. Modeling
- Discussion with Colleagues
- Focused Training, Coaching, and Practice
- **Accurate Feedback Mechanisms**
e.g. Compare initial qualitative judgment to final result from the statistical analysis of monitoring data

<table>
<thead>
<tr>
<th>SEG</th>
<th>Agent / Chemical</th>
<th>OEL</th>
<th>Initial Exposure Rating</th>
<th>Initial Certainty Rating</th>
<th>Final Exposure Rating</th>
<th>Final Certainty Rating</th>
</tr>
</thead>
</table>

Implement The AIHA Strategy!
IHDA-Student to Provide Feedback for IH Calibration To Improve Professional Judgment

- OEL=1 ppm
- Prior judgment of Category 1
- Monitoring Result:
 - n = 4
 - x₁ = 0.55 ppm
 - x₂ = 0.34 ppm
 - x₃ = 0.12 ppm
 - x₄ = 0.47 ppm

Feedback: Is the Prior consistent with the data-based Likelihood?

Note: Used for feedback ONLY. Final exposure rating determined by Likelihood Chart.
Discussion

Improving our judgments is not particularly complicated – we know from other experiences that it takes practice with accurate feedback, discussion, and structure to overcome our biases. What is difficult is having the discipline to consistently follow through with those activities. We need to work them into our routine professional practice.
CENSORED DATA
BDA Handles Censored Data Very Well (OEL = 100)

- **None Censored**: X
 - 65
 - 29
 - 48
 - 42
 - 33
 - 16
 - 57

- **Partially Censored**: X
 - <29
 - 48
 - 42
 - <33
 - <16
 - <57

- **Severely Censored**: X
 - <29
 - <48
 - <42
 - <33
 - <16
 - <57
BDA Handles Censored Data Very Well (OEL = 100)

Severely Censored

<table>
<thead>
<tr>
<th>X</th>
<th><65</th>
<th><29</th>
<th><48</th>
<th><42</th>
<th><33</th>
<th><16</th>
<th><57</th>
</tr>
</thead>
</table>

Likelihood Function

<table>
<thead>
<tr>
<th>Decision Probability</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
</table>

GSD

| 4 | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 |

Fully Censored

<table>
<thead>
<tr>
<th>X</th>
<th><65</th>
<th><29</th>
<th><48</th>
<th><42</th>
<th><33</th>
<th><16</th>
<th><57</th>
</tr>
</thead>
</table>

Likelihood Function

<table>
<thead>
<tr>
<th>Decision Probability</th>
<th>0.008</th>
<th>0.401</th>
<th>0.41</th>
<th>0.181</th>
<th>0.016</th>
<th>0.003</th>
</tr>
</thead>
</table>

GSD

| 4 | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 |
Reminder: Garbage In = Garbage Out

- Bayesian and traditional statistical tools assume scientifically-sound data.
- Statistical tools know nothing about flow rates, sample times, sampling / analytical detection limits or other factors that can influence the censoring of monitoring results.
- Take the time to plan your sampling strategy to ensure a reasonably low detection limit (e.g. 10% of the OEL or lower)
Caution About Fully Censored Data Near the OEL
(OEL = 1000 ppm)

<table>
<thead>
<tr>
<th>X</th>
<th>64</th>
<th>98</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td><99</td>
<td><43</td>
<td></td>
</tr>
</tbody>
</table>

Likelihood Function

<table>
<thead>
<tr>
<th>Decision Probability</th>
<th>0.539</th>
<th>0.402</th>
<th>0.057</th>
<th>0.002</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Rating</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Student Version
PRIORS/PARAMETER SPACE
IHDA STUDENT VS.
EXPOSTATS
Priors/Parameter Space
IHDA vs. Expostats

IHDA

Can adjust GMs and GSDs considered in Bayesian analysis “Parameter Space”

- Variable range of GM with default between 0.0005 x OEL and 5 x OEL
- Variable uniform distribution of GSD with default between 1.05 and 4

Can enter an “informative” prior incorporating previous knowledge about the exposure scenario.
Visualization of Parameter Space (OEL = 1)

IHDA Student

- Variable range of GM with default between 0.0005 x OEL and 5 x OEL and uniform on the logarithmic scale.
- Variable GSD with default between 1.05 and 4 and uniform on the logarithmic scale.
Priors/Parameter Space
IHDA vs. Expostats

IHDA

Can adjust GMs and GSDs considered in Bayesian analysis “Parameter Space”

- Variable range of GM with default between 0.0005 x OEL and 5 x OEL
- Variable uniform distribution of GSD with default between 1.05 and 4

Can enter an “informative” prior incorporating previous knowledge about the exposure scenario.

Expostats

“Parameter Space” has fixed assumptions about GMs and GSDs considered in Bayesian analysis

- GM fixed between 2x10⁰ x OEL and 5x10⁸ x OEL and uniform on the logarithmic scale
- GSD distribution fixed as ln(GSD) is lognormal distribution with GM = 0.84 and GSD = 1.87

At this time one cannot enter a prior incorporating previous knowledge about the exposure scenario beyond the assumptions built into the Expostats Parameter Space.
Visualization of Parameter Space (OEL = 1)

Expostats

- GM fixed between 2×10^{-9} x OEL and 5×10^8 x OEL and uniform on the logarithmic scale
- GSD distribution fixed as $\ln($GSD$)$ is lognormal distribution with GM = 0.84 and GSD = 1.87

![Graph showing parameter space visualization and distribution](image)

Figure 32: Density curve for the prior distribution for geometric standard deviation in Expostats model 1.
Impact of Parameter Space

Expostats
Fixed Parameter Space

IHDA
Variable Parameter Space

Sample Results (ppm)
- OEL = 1 ppm
- GM = 0.3 ppm
- GSD = 1.6
- 95%ile = 0.7 ppm
- 95%ile UCL$_{1.95}$ = 3.9 ppm
SUMMARY: ADVANTAGES OF BAYESIAN STATISTICS
Advantages of Bayesian Statistics

- More Intuitive Depiction of Exposures and Uncertainty than Traditional Statistics
- Direct Alignment with AIHA Exposure Rating and Control Categories
- Easy to Communicate
- Great for small monitoring data sets... Including n=1
- Elegant Handling of Censored Data (Non-Detects)... Including Fully Censored Data

Sample Size n=1

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>0.722</td>
</tr>
</tbody>
</table>

Fully Censored Data

<table>
<thead>
<tr>
<th>Sample Results (ppm)</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>0.000</td>
</tr>
<tr>
<td><3.3</td>
<td>0.019</td>
</tr>
<tr>
<td><12</td>
<td>0.257</td>
</tr>
<tr>
<td><9</td>
<td>0.723</td>
</tr>
</tbody>
</table>

Student Version

<table>
<thead>
<tr>
<th>Exposure Rating</th>
<th>Decision Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.019</td>
</tr>
<tr>
<td>7</td>
<td>0.257</td>
</tr>
<tr>
<td>8</td>
<td>0.723</td>
</tr>
</tbody>
</table>
KEY RESOURCES
Free IH Statistical Analysis Tools

• **AIHA IHSTAT** - Excel application that calculates various exposure statistics, performs goodness of fit tests, and graphs exposure data.
 https://www.aiha.org/public-resources/consumer-resources/topics-of-interest/ih-apps-tools

• **Bayesian Decision Analysis – IH Data Analyst Student Edition**
 Computer Tool
 https://www.easinc.co/

• **Expostats Bayesian IH Data Analyst Tool**

Fix IHSTAT
Free Exposure Assessment Tools

• IH/OEHS Exposure Scenario Tool (IHEST)™
 Excel tool to aid Basic Characterization

• IHSkinPerm™
 Excel tool for estimating dermal absorption.

• Basic Exposure Assessment and Sampling Spreadsheet™
 Excel template for entering EA/BC and sampling data

• The Qualitative Exposure Assessment Checklist (The Checklist)™

• IHMOD 2.0™
 Excel-based mathematical modeling spreadsheet
 https://www.aiha.org/public-resources/consumer-resources/topics-of-interest/ih-apps-tools

Fix tools per email
Exposure Decision Analysis: Competency Assessment

Exposure Decision Criteria
- Allowable Exceedance
- Needed Confidence
- Use of Exposure Categories

Traditional Industrial Hygiene Stats
- Properties of a lognormal distribution
- Upper percentile estimate calculation & interpretation
- Tolerance Limit calculation & interpretation

Bayesian Decision Analysis (BDA)
- Properties of a lognormal distribution
- Upper percentile estimate calculation & interpretation
- Tolerance Limit calculation & interpretation

Data and Similar Exposure Groups (SEGs)
- Rules for combining data
- Indications that a SEG may need refining

Decision Heuristics and Human Biases
- Common sources of bias in data interpretation and exposure assessment
- How to avoid bias in data interpretation

Exposure Data Interpretation
- Most likely exposure category given data
- Meet the certainty requirement given data

Techniques for Improving Professional Judgments
- Feedback loops (quantitative judgment > monitoring > qualitative judgment)
- Group judgment sessions
- Documentation of rationale
- Break decisions into aggregate parts (Modeling)
Learn More:

• Papers:
Learn More:

- **Books:**

- **Opinion:**
 - Mulhausen, J. “How to Improve Exposure Judgments” President’s Message. The Synergist. (December 2021).

- **Videos:**
AIHA VIDEO SERIES:
MAKING ACCURATE EXPOSURE RISK DECISIONS

Join us for the next video in the series . . .

Video 1A: Exposure Variability and the Importance of Using Statistics to Improve Judgements

Video 1B: Rules of Thumb for Interpreting Exposure Monitoring Data

Video 2: Introduction to Bayesian Statistical Approaches and Their Advantages

Video 3A: Free Bayesian Statistical Tools: IHDA Student Edition

Video 3B: Free Bayesian Statistical Tools: Expostats

Video 4: Implementing AIHA Strategy Using Statistical Tools: Examples
AIHA VIDEO SERIES:
MAKING ACCURATE EXPOSURE RISK DECISIONS

Video 2:
Introduction to Bayesian Statistical Approaches and Their Advantages