

Occupational Safety and Health Administration

Crystalline Silica

Jason Furlow
Industrial Hygienist
DOL-OSHA
Dallas Area Office

What is Silica?

- Mineral found commonly in nature as quartz and sand
- Has chemical formula SiO₂
- Occurs in several different forms called polymorphs
- Has many industrial uses

Polymorphs of Silica:

Polymorph: an organism or inorganic object or material that takes various forms

- Quartz
- Critobalite
- Tridymite
- Coesite
- Seifertite

- Stishovite
- Melanophlogit
- Moganite
- Keatite
- Faujasite

Polymorphs of Silica:

Quartz

Moganite

Seifertite

Cristobalite

Stishovite

Faujasite

Tridymite

Keatite

Coesite

Melanophlogite

Quartz

- Most common form of crystalline silica
- Second most abundant mineral in Earth's crust
- Found in granite, sandstone, shale, and carbonate rocks
- Highly organized structure
- Chemical formula is SiO₂
- Known carcinogen

Cristobalite

- Forms naturally above 1470° C
- Common in volcanic rocks
- Chemical formula is SiO₂
- Has different structure than silica
- Known carcinogen

Tridymite

- Forms naturally between 870 °C and 1470 °C
- Common in volcanic rock
- Has chemical formula SiO₂
- Has different structure than silica and cristobalite
- Known carcinogen
- Rarely used in industrial environments

Industrial Uses of Silica

- Glass and porcelain
- Optical fibers for telecommunications
- Production of elemental silicon used in electronics
- Sand casting for manufacturing of metallic components

- Food additive
- Concrete and mortar
- Polishing and cutting
- Sandblasting
- Electrical insulators
- Toothpaste
- High-temperature thermal protection fabric

Most Common Industries for Silica Exposure

Construction Industry

- Abrasive blasting
- Jackhammering
- Rock/well drilling
- Concrete mixing and drilling
- Brick and concrete cutting
- Quarry work and tunneling

General Industry

- Abrasive blasting
- Cement and brick manufacturing
- Asphalt/pavement manufacturing
- China and ceramic manufacturing
- Steel and foundry industries

Hazards of Crystalline Silica

- Silica exposure is a serious threat to nearly 2 million works in the U.S.A
- Blasting, cutting, chipping, drilling, or grinding materials that contain crystalline silica can result in particles of silica that are considered respirable
- Respirable particles are smaller than 10 microns
- Respirable particles are small enough to penetrate deep into the lungs, beyond the body's natural clearance mechanisms
- Crystalline silica has been classified as a lung carcinogen

PARTICLE DIAMETERS

Health Effects of Exposure to Crystalline Silica

- Silicosis
- Lung cancer
- Tuberculosis and other lung infections
- Chronic obstructive pulmonary disease (COPD)
- Renal disease
- Other forms of cancer

Silicosis

- Silicosis is inflammation and scarring of the lungs
- Symptoms include:
 - Shortness of breath
 - Cough
 - Fever
 - Cyanosis (bluish skin)
- No cure
- More susceptible to tuberculosis and other lung infections

Severity of Silicosis

- Dust concentration
- Percent of free silica
- Duration of exposure
- Size of the particles

Types of Silicosis

Chronic/Classic

- Most common
- 15-20 years of moderate to low exposure
- Symptoms:
 - Shortness of breath
 - Fatigue
 - Low oxygen levels
 - Chest pain
 - Respiratory failure

Accelerated

5-10 years of high exposure

Symptoms:

- Shortness of breath
- Weakness
- Weight loss

Acute

Few as 2 years
 after exposure to
 high concentrations

Symptoms:

- Disabling shortness of breath
- Weakness
- Weight loss
- Death

Number of Workers Exposed to Respirable Crystalline Silica in Selected General Industry/Maritime Sectors

Industry Sector	Number of Workers Currently Exposed
Asphalt Roofing Materials	4,395
Concrete Products	54,449
Cut Stone	12,085
Dental Laboratories	41,194
Foundries	48,223
Jewelry	40,508
Porcelain Enameling	5,454
Pottery	10,148
Railroads	16,895
Ready-Mix Concrete	43,920
Shipyards	4,500
Structural Clay products	8,435
Support Activities for Oil and Gas Operations	25,440

Statistics:

- From 1968-2002 silicosis was recorded as the underlying cause of death for approximately 74 million U.S. workers
- An estimated 2 million employees were exposed to silica in 2007
- It is estimated that 1,600 new cases of silicosis occur each year in the United States

Statistics:

Total number of death with Silicosis mentioned on death certificate 1970-2004

Total number of	Percent Change	
Silicosis Deaths	(Reduction)	
4,263		
2,711	36%	
1,958	28%	
1,601	22%	
1,389	13%	
1,018	27%	
809	20%	
	Silicosis Deaths 4,263 2,711 1,958 1,601 1,389 1,018	

*NORMS database (http://webappa.cdc.gov/ords/norms.html)

Most frequently recorded industries on death certificate

[Number	
CIC	Industry	of Deaths	Percent
060	Construction	118	13.4
040	Metal mining	86	9.8
041	Coal mining	69	7.8
270	Blast furnaces, steelworks,	51	5.8
	rolling and finishing mills		
050	Nonmetallic mining and	48	5.5
	quarrying, except fuel		
271	Iron and steel foundries	48	5.5
262	Miscellaneous nonmetallic	44	5.0
	minerals and stone products		
392	Not specified manufacturing	33	3.8
	industries		
331	Machinery, except electrical,	23	2.6
	n.e.c.		
252	Structural clay products	20	2.3
	All other industries	317	36
	Industry not reported	23	2.6
	Total	880	100
OTO		1 1 1	.0. 1

CIC – Census Industry Code n.e.c. – not elsewhere classified SOURCE: National Center for Health Statistics multiple cause of death data. NIOSH 2008c, Table 3-6, p. 62

How to Protect Works From Silica Exposure:

- Replace silica material with safer substitutes
- Provide engineering controls such as local exhaust
- Use work practice controls such as water
- Use appropriate respiratory protection
- Provide exposure and medical monitoring
- Conduct employee training

Silica Sampling

- Sample media is preweighed, low ash, 5-µm pore size, 37-mm diameter polyvinyl chloride
- 10-mm nylon Dorr-Oliver cyclone is used with a personal sampling pump
- Sampled with a flow rate 1.7
 L/min for 480 minutes (8 hours)

Lab Analysis

- Pre-weighed filters are first submitted for gravimetric analysis to determine sample weight
- Filters are transferred to a flask
- Tetrahydrofuran (THF) is added to dissolve the filter
- The suspension is agitated and deposited onto silver membrane filters through a filtration process
- The sample is fixed to the silver filter using parlodion, an organic glue

Lab Analysis

Lab Analysis

- Silver filters are analyzed using x-ray diffraction
- X-rays are shot into the sample
- X-rays interact with the crystal structure and refract at district angles
- Diffraction angles are viewed as peaks on paper
- Silica analysis uses 4 diffraction angles and yields 4 peaks
- Intensity of peaks correlated to the amount of silica present in sample

X-Ray Diffraction

Current Silica PEL

- The current PEL is a sliding scale dependent on the percent of quartz in dust and the mass of the sample
- Current PEL is not for pure silica (or polymorph), but for dust containing silica
- PEL for construction and general industry are calculated differently
- The same is true for cristobalite and tridymite

Current Silica PEL: General Industry

Step 1: Calculate PEL

$$PEL\left(\frac{mg}{m^3}\right) = \frac{10(\frac{mg}{m^3})}{\% \ silica + 2}$$

Step 2: Calculate 8 hour TWA

$$8 \ hour \ TWA = \frac{(concentration\left(\frac{mg}{m^3}\right))(sample \ time)}{480 \ minutes}$$

Step 3: Calculate severity

$$Severity = \frac{8 hour TWA}{PEL}$$

Current Silica PEL: Construction

- Step 1: Calculate PEL as per general industry
- Step 2: Calculate 8 hour TWA and severity
- Step 3: Determine possible over exposure, if not, STOP
- Step 4: Calculate construction PEL

Construction
$$PEL = \frac{250}{5 + \% \ silica}$$

• Step 5: Convert TWA $(\frac{mg}{m^3})$ to TWA (mppcf)-million particles per cubic foot

$$mppcf = \frac{sample \frac{mg}{m^3}}{0.1}$$

 Step 6: Compare the TWA (mppcf) with the construction PEL to determine over exposure

Proposed Silica Standard

- PEL of $50 \frac{\mu g}{m^3}$ for 8 hours
- PEL would be the same for all industries and would not be variable
- Monitoring employee exposure
- Limit works' access to areas of high exposure
- Provide effective methods to reduce exposure
- Require employees with high exposure to receive medical exams
- Require employee training

Effects of New Standard

- Estimated to save 700 lives per year
- Prevent 1,600 new cases of silicosis per year
- Reduce exposure for over 2.2 million workers

Questions?

